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1. Introduction 

Networks of finite element beam elements are being explored as a means of 

representing trabecular bone structure in an adaptive hierarchical multiscale (HMS) 

simulation framework. The beams are intended to comprise a representative 

volume element (RVE) at the lower length scale, which is interrogated to produce 

a response used by a discretized skeletal model at the higher length scale. Use of a 

beam network will facilitate representation of an anisotropic structure and 

variations in bone density by modifying the beam arrangement and cross-sectional 

properties. The hierarchical multiscale framework is described in detail by Knap  

et al.1 

In the hierarchical multiscale framework, the models functioning at both the higher 

and lower length scale exchange information. For the coupled finite element models 

considered here, the lower length scale model replaces the constitutive evaluation 

in the higher length scale code. Consistent with this treatment as a constitutive 

model, the higher length scale model provides a set of history variables and the 

velocity gradient to drive the lower length scale model, and the lower length scale 

model returns Cauchy stress and updated values of the history variables. A 

consistent scheme is needed for specifying boundary conditions on the RVE and 

determination of the average Cauchy stress from the lower length scale model. 

These 2 tasks are the focus of this report. 

In the construct of the hierarchical multiscale framework, the lower length scale 

model does not persist from one time step to the next. Their persistence would 

require that all lower length scale models run throughout the entire simulation and 

would be inconsistent with the efficiency objectives of the hierarchical multiscale 

framework.1 Instead, for each time step, the lower length scale model is 

reinstantiated to a deformed state that is consistent with the end of the previous time 

step. The reinstantiation must be accomplished using a reduced set of information 

carried by the higher length scale model. The reduction and reinstantiation 

procedure is a research area itself for the many applications of the hierarchical 

multiscale framework, as the solution is often path-dependent. However, for a 

narrower set of simulations in which the material and geometric responses are 

independent of deformation path, only the end state needs to be specified. The 

small-strain, linear elastic examples used in the following demonstration problems 

are assumed to be path-independent.  

The selection of an appropriate RVE is also a research topic that will not be 

addressed here. The term “representative volume element” is used in the most 

general sense of representing a volume of material. There is no implication that the
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homogenized response of the model has converged with respect to increasing the 

volume of material represented. For irregular structures, and particularly for those 

with gradients, such convergence may never be reached. There are also potential 

issues that arise from an insufficient number of beams within the RVE and networks 

of beams whose connectivity results in otherwise degenerate structures. Such 

instances reflect resolution issues and model construction, and those types of sparse 

or degenerate beam networks are not considered at this time. 

The purpose of this memorandum is to document and validate the choices made for 

applying boundary conditions to, and extracting Cauchy stress from, a network of 

elastic beams comprising an RVE for use within the hierarchical multiscale 

framework.1 While it has been shown that a consistent reduction of a regular 

network of beams can lead to higher order gradient models,2 the determinations 

herein are restricted to simple volume averages that are consistent with traditional 

finite element codes that may be used as the higher length scale model. Higher order 

representations are not considered. The stress averaging outlined in the following 

was not found in a cursory search of the literature, but such virtual work approaches 

are standard practice and there is no assumption that it is original or unique. 

Vectors and second-rank tensors are represented by bold face Latin and Greek 

characters, respectively. A raised dot operator indicates an inner product, and a 

colon operator signifies a trace of the inner product of 2 second-rank tensors, a 

contraction. All summations are explicitly indicated, and no summation convention 

is assumed. 

Unit vectors along the beam directions are expressed in terms of the coordinate 

direction base vectors as follows: 

 𝒓 = 𝑟𝑥𝒆𝑥 + 𝑟𝑦𝒆𝑦 + 𝑟𝑧𝒆𝑧. (1) 

 𝒔 = 𝑠𝑥𝒆𝑥 + 𝑠𝑦𝒆𝑦 + 𝑠𝑧𝒆𝑧. (2) 

 𝒕 = 𝑡𝑥𝒆𝑥 + 𝑡𝑦𝒆𝑦 + 𝑡𝑧𝒆𝑧. (3) 

The direction of the beam axis is denoted by the unit vector 𝒓, and s and t denote 

an orthogonal pair of vectors that are also orthogonal to the beam axis. 𝒆𝑥, 𝒆𝑦, and 

𝒆𝑧 are the unit vectors along the global Cartesian coordinate axes, and scalar 

projections such as 𝑟𝑥 = 𝒓 ⋅ 𝒆𝑥 are direction cosines of the beam unit vectors. 

2. Lower Length Scale Model  

A multitude of finite element codes and beam elements can be used for the beam 

model, and the boundary conditions and stress averaging methods described here 

should be straightforward to apply to many of them. The Lawrence Livermore 
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National Laboratory’s ParaDyn code is used within the HMS framework, so it is an 

obvious choice for the present evaluations. ParaDyn is available on US Department 

of Defense (DOD) high-performance computing machines without restrictions on 

the number of simultaneous executions. It has fast initialization and execution, 

robust algorithms, and xdmf/hdf5 data files for ease of extracting requisite 

information.  

ParaDyn is an explicit dynamic code where the dynamic stress equilibrium 

equations are solved by a second order accurate time integration algorithm, and 

information is propagated through the structure by stress waves. The time step is 

limited by the Courant-Friedrichs-Lewy condition to approximate the time it takes 

a wave to traverse an element. Hence, many small time steps are required for the 

solution to approach a quasi-static equilibrium configuration as waves reverberate 

within the model domain. The waves and dynamic modes persist unless quieted by 

some form of damping. The initialization method and damping described in the 

following will minimize these dynamic effects and reduce the number of time steps 

required to obtain a quiescent solution.  

Beam networks are generated from nodes that exist either on the exterior boundary 

of the RVE or in the interior of the RVE. These exterior and interior nodes, and 

their connectivity, form the beam networks of the lower length scale model. Unlike 

continuum RVE models where the entire exterior of the RVE is populated by nodes, 

beam structures do not necessarily define a nice box with nodes on edges and 

corners. Beams will intersect the RVE surface at multiple angles and could slide 

considerably along the surface if constrained only in the direction of the surface 

normal. This would create a locally high average deformation on the surface 

inconsistent with the applied boundary conditions. Hence, all degrees of freedom 

of all exterior nodes are constrained.  

The specific beam element used in the evaluations is the Hughes-Liu beam, which 

is derived from a consistent reduction of a shell element.3 The beam supports axial 

forces, shear forces, bending moments, and torsion. The beams can have an 

arbitrary cross-section shape (integrated with Gaussian quadrature) and can also 

have a linear taper along their length. Only circular beams of constant cross section 

are used in this study. The method presented will be applicable to arbitrary beam 

cross sections, but additional work will be needed to determine the accuracy of the 

method for tapered beams.  

Certain assumptions about the stress distribution are built into the beam elements. 

While stress components given with respect to the beam axes represent the stress 

in the beam, it is not a detailed stress field. For example, the parabolic shear stress 

distribution across the beam section is represented by an average, and there is no 
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counterpart to this shear stress resolved along the beam axis. Consequently, 

standard continuum tensor transformations and stress averaging do not apply 

because of assumptions associated with the dimensional reduction. This is 

discussed further in Section 4. 

3. Reinstatiating the Beam Network 

Within the HMS framework, a reduced set of information is supplied to the lower 

length scale model. This information is used to first reinstantiate the model to its 

prior state and then deform it to the current state. However, this process can result 

in unstable numerical behaviors if the path-dependence is important and not taken 

into account. For the problems considered here, linear elastic networks of beams 

are subjected to small deformations. Elastic solutions are path-independent 

provided the path taken does not encounter a material or geometrically driven 

bifurcation point, such as buckling. With the small deformations and the relatively 

small beam networks considered in the following simulations, no bifurcation points 

are expected in the vicinity of the deformed configuration, so the final state is 

assumed to be independent of deformation path. This assumption simplifies the 

reinstatiation problem to working only with the initial beam configuration and the 

current deformation specified by the higher length scale model.  

To ensure that the deformation applied to the model is consistent with the 

deformation of the higher length scale model in an HMS scheme, all of the nodes 

on the exterior of the beam network model are moved to points determined by their 

initial coordinates and the applied deformation gradient. However, abruptly moving 

the exterior nodes to the proper locations would create dynamic effects on the 

interior of the model when using the explicit time integration scheme. Alternatively, 

moving the exterior nodes slowly enough to avoid these inertial effects would be 

unacceptably time consuming. The approach presented here is to move both the 

exterior and the interior nodes to positions consistent with the applied deformation 

and then to remove the constraint from these interior nodes. This allows the 

coordinates to be initialized to the average deformed configuration using just a few 

time steps, and the subsequent dynamic solution is essentially an energy 

minimization from that uniform strain state with the exterior nodes fixed. 

Since the beams are elastic, the dynamic motion of the interior will persist unless 

some form of dissipation is applied. Here, a viscous force is applied to the nodes 

through a mass proportional damping algorithm available in ParaDyn. This is a 

nonconservative force, but because the desired quasi-static solution is  

path-independent, the precise deformation history and energy loss do not affect the 

solution. There are 2 parameters required for the mass proportional damping option: 
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the peak damping frequency and the fraction of critical damping. The frequency 

can be estimated by observing an undamped simulation and the fraction of critical 

damping is chosen to be 0.9 to allow modest overshoot while settling into the static 

equilibrium configuration. 

4. Cauchy Stress Determination from Virtual Work 

Several approaches can be used to determine the average stress over the RVE beam 

model. The most obvious may be summing forces over boundaries, but there are 

potential issues because the deformation is applied to all of the exterior nodes. The 

exterior forces in the 3 coordinate directions will sum to zero, but normal forces on 

opposite faces of the RVE may sum to different values because of tangential forces 

on the remaining surfaces. This does not produce a well-defined average stress. 

Similarly, tangential forces on corresponding faces may not balance to produce a 

symmetric shear stress. 

Here a volume averaging method based on virtual work will be employed. It is 

motivated by volume averaging stress components in continuum models,4 but the 

implementation details are somewhat different when applied over beam structures. 

The method assumes that an equilibrium solution has been established for the beam 

network in the RVE. The average stress of the RVE, �̅�, is then constructed to have 

the same virtual work, 𝛿𝜙, as the beam network when subjected to a common, 

work-conjugate virtual strain, 𝛿𝜺. The virtual work is the integral of mechanical 

work over the RVE.  More specifically, it is the volume integral of the contraction 

of the Cauchy stress tensor with the work conjugate virtual strain tensor. For a 

constant average stress over the RVE, the volume integral can be reduced to a 

simple multiplication by the RVE volume. 

 𝛿𝜙 = ∫ 𝝈: 𝛿𝜺 d𝑣
𝑉

 ≡  �̅�: 𝛿𝜺 𝑉. (4) 

Since each beam is a discrete element, the virtual work on the network is 

determined by summing the contributions from the individual virtual work from 

each beam element.  

 𝛿𝜙 = ∑ ∫ 𝝈𝐵𝑒𝑎𝑚: 𝛿𝜺 d𝑣
𝑣𝐵𝑒𝑎𝑚

𝑁−𝐵𝑒𝑎𝑚𝑠
1 . (5) 

Consistent with the development of beam models, the virtual work is projected into 

an orthogonal coordinate system aligned with the beam, and the volume integration 

is decomposed into integrals over the beam cross-sectional area, a, and the beam 

length, l. 
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 𝛿𝜙 = ∑ ∫ ∫ (𝜎𝐴𝛿휀𝐴 + 𝜏𝑆𝛿𝛾𝑆 + 𝜏𝑇𝛿𝛾𝑇) d𝑎 d𝑙
𝑎𝐵𝑒𝑎𝑚𝑙𝐵𝑒𝑎𝑚

𝑁−𝐵𝑒𝑎𝑚𝑠
1 , (6) 

where 𝜎𝐴 is the stress distribution along the beam axis and 𝜏𝑆 and 𝜏𝑇 are shear stress 

distributions over the beam cross section along the local orthogonal directions S 

and T, respectively. The virtual strain has likewise been projected in this local beam 

coordinate system with 𝛿휀𝐴 being the projection along the beam axis and 𝛿𝛾𝑆 and 

𝛿𝛾𝑇 being shear strains in the S and T directions. The shear strains correspond to 

gradients along the beam axis of virtual displacements in the S and T directions. 

Shear displacements along the beam axis are not captured by beam elements.  

The beam cross-sectional area is assumed to be constant over the length of the 

beam, which allows the beam length to be integrated separately. The integration of 

the stress over the cross section is accomplished by numerical quadrature for the 

Hughes-Liu beam element in ParaDyn. The cross-section integration produces 

forces in the beam coordinate direction such that the virtual work is reduced to a 

summation over all of the beams in the RVE.  

 𝛿𝜙 =   ∑ 𝑙 (𝐹𝐴𝛿휀 + 𝐹𝑆𝛿𝛾𝑆 + 𝐹𝑇𝛿𝛾𝑇).𝑁−𝐵𝑒𝑎𝑚𝑠
1  (7) 

The integrated forces 𝐹𝐴, 𝐹𝑆, and 𝐹𝑇 appearing in Eq. 7 are available in the ParaDyn 

output. 

The virtual work of the unknown average stress, �̅�, represented by Eq. 4 is set equal 

to the virtual work given by the explicit summation over the beams in Eq. 7. Then, 

by virtue of the virtual strains being arbitrary, the average stress can be determined. 

Determining the components of the average stress requires that the projections of 

the virtual strain tensor appearing in Eq. 7 be expressed as components along the 

global Cartesian coordinate axes. 

The virtual strain along the beam axis can be obtained by a straightforward 

projection of the strain tensor. The definitions of the projected shear strains must 

be consistent with the virtual work expression for beam elements, Eq. 7. The 

displacements accompanying the virtual shear strains are orthogonal to the beam 

axes with no displacements along the beam axes. This is reminiscent of simple 

shear by 𝛿𝛾. Thus, when the virtual strain is projected to the beam coordinates, only 

the component of the strain associated with displacement orthogonal to the beam 

axis contributes to the virtual work. These are 

 𝛿𝛾𝑆 = 𝒔 ⋅ 𝛿𝜺 ⋅ 𝒓  and  𝛿𝛾𝑇 = 𝒕 ⋅ 𝛿𝜺 ⋅ 𝒓. (8) 

The virtual strains projected along the beam axis, r, and in the 𝒔 and 𝒕 directions 

are expressed as components along the global Cartesian coordinate axes using the 

definitions of the beam vectors from the notation section. 
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 𝛿휀𝐴 = 𝒓 ⋅ 𝛿𝜺 ⋅ 𝒓 =  𝑟𝑥𝒆𝑥 ⋅ 𝛿𝜺 ⋅ 𝒆𝑥𝑟𝑥 + 𝑟𝑦𝒆𝑦 ⋅ 𝛿𝜺 ⋅ 𝒆𝑦𝑟𝑦 + 𝑟𝑧𝒆𝑧 ⋅ 𝛿𝜺 ⋅ 𝒆𝑧𝑟𝑧                

 +2 𝑟𝑦𝒆𝑦 ⋅ 𝛿𝜺 ⋅ 𝒆𝑧𝑟𝑧 + 2 𝑟𝑧𝒆𝑧 ⋅ 𝛿𝜺 ⋅ 𝒆𝑥𝑟𝑥 + 2 𝑟𝑥𝒆𝑥 ⋅ 𝛿𝜺 ⋅ 𝒆𝑦𝑟𝑦 (9) 

 = 𝑟𝑥
2𝛿휀𝑥𝑥 +  𝑟𝑦

2𝛿휀𝑦𝑦 + 𝑟𝑧
2𝛿휀𝑧𝑧 + 2 𝑟𝑦𝑟𝑧𝛿휀𝑦𝑧 + 2 𝑟𝑧𝑟𝑥𝛿휀𝑧𝑥 + 2 𝑟𝑥𝑟𝑦𝛿휀𝑥𝑦. 

 

 𝛿𝛾𝑆 = 𝒔 ⋅ 𝛿𝜺 ⋅ 𝒓   𝑟𝑥𝑠𝑥𝛿휀𝑥𝑥 + 𝑟𝑦𝑠𝑦𝛿휀𝑦𝑦 + 𝑟𝑧𝑠𝑧𝛿휀𝑧𝑧 + (𝑟𝑦𝑠𝑧+𝑠𝑦𝑟𝑧)𝛿휀𝑦𝑧                

 +(𝑟𝑧𝑠𝑥 + 𝑠𝑧𝑟𝑥)𝛿휀𝑧𝑥 + (𝑟𝑥𝑠𝑦 + 𝑠𝑥𝑟𝑦)𝛿휀𝑥𝑦. (10) 

 

 𝛿𝛾𝑇 = 𝒕 ⋅ 𝛿𝜺 ⋅ 𝒓 =  𝑟𝑥𝑡𝑥𝛿휀𝑥𝑥 + 𝑟𝑦𝑡𝑦𝛿휀𝑦𝑦 + 𝑟𝑧𝑡𝑧𝛿휀𝑧𝑧 + (𝑟𝑦𝑡𝑧+𝑡𝑦𝑟𝑧)𝛿휀𝑦𝑧             

 +(𝑟𝑧𝑡𝑥 + 𝑡𝑧𝑟𝑥)𝛿휀𝑧𝑥 +  (𝑟𝑥𝑡𝑦 + 𝑡𝑥𝑟𝑦)𝛿휀𝑥𝑦. (11) 

Substituting Eqs. 9–11 into Eq. 7, the virtual work expression for the beam network 

is 

𝛿𝜙 = ∑ [(𝐹𝐴𝑟𝑥
2 +   𝐹𝑠𝑟𝑥𝑠𝑥 +   𝐹𝑡𝑟𝑥𝑡𝑥) 𝑙 𝛿휀𝑥𝑥

𝑁−𝐵𝑒𝑎𝑚𝑠

1

           

+ (𝐹𝐴𝑟𝑦
2 +   𝐹𝑠𝑟𝑦𝑠𝑦 +   𝐹𝑡𝑟𝑦𝑡𝑦) 𝑙 𝛿휀𝑦𝑦                                                         

+ (𝐹𝐴𝑟𝑧
2 +   𝐹𝑠𝑟𝑧𝑠𝑧 +  𝐹𝑡𝑟𝑧𝑡𝑧) 𝑙 𝛿휀𝑧𝑧                                                           

+ (2 𝐹𝐴𝑟𝑦𝑟𝑧 +   𝐹𝑠𝑟𝑦𝑠𝑧 +   𝐹𝑠𝑟𝑧𝑠𝑦 +   𝐹𝑡𝑟𝑦𝑡𝑧 +   𝐹𝑡𝑟𝑧𝑡𝑦) 𝑙 𝛿휀𝑦𝑧      (12) 

+ ( 2𝐹𝐴𝑟𝑧𝑟𝑥 +  𝐹𝑠𝑟𝑥𝑠𝑧 +   𝐹𝑠𝑟𝑧𝑠𝑥 +  𝐹𝑡𝑟𝑥𝑡𝑧 +   𝐹𝑡𝑟𝑧𝑡𝑥) 𝑙 𝛿휀𝑧𝑥               

+ ( 2𝐹𝐴𝑟𝑥𝑟𝑦 +   𝐹𝑠𝑟𝑥𝑠𝑦 +   𝐹𝑠𝑟𝑦𝑠𝑥 +   𝐹𝑡𝑟𝑥𝑡𝑦 +  𝐹𝑡𝑟𝑦𝑡𝑥) 𝑙 𝛿휀𝑥𝑦 .            

 

Eq. 12 is simplified by introducing:  

𝐹𝑥 = 𝐹𝐴 𝑟𝑥 + 𝐹𝑠 𝑠𝑥 + 𝐹𝑡 𝑡𝑥 

𝐹𝑦 = 𝐹𝐴 𝑟𝑦 + 𝐹𝑠 𝑠𝑦 + 𝐹𝑡  𝑡𝑦                                          (13) 

  𝐹𝑧 = 𝐹𝐴 𝑟𝑧 + 𝐹𝑠  𝑠𝑧 + 𝐹𝑡 𝑡𝑧 , 

so that the expression for virtual work, Eq. 7, becomes 

𝛿𝜙 = ∑ 𝑙 [𝐹𝑥𝑟𝑥𝛿휀𝑥𝑥 + 𝐹𝑦𝑟𝑦𝛿휀𝑦𝑦 + 𝐹𝑧𝑟𝑧𝛿휀𝑧𝑧   

𝑁−𝐵𝑒𝑎𝑚𝑠

1

                                                     

                              +(𝐹𝑦𝑟𝑧 + 𝐹𝑧𝑟𝑦)𝛿휀𝑦𝑧 + (𝐹𝑧𝑟𝑥 + 𝐹𝑥𝑟𝑧)𝛿휀𝑧𝑥 + (𝐹𝑥𝑟𝑦 + 𝐹𝑦𝑟𝑥)𝛿휀𝑥𝑦].        (14) 

 

Recalling the right-hand side of Eq. 4, the virtual work of the average stress over 

the RVE subjected to the same virtual strain is expanded explicitly as 

     𝛿𝜙 = �̅�: 𝛿𝜺 𝑉                                                                                                                  

            = [�̅�𝑥𝑥𝛿휀𝑥𝑥 + �̅�𝑦𝑦𝛿휀𝑦𝑦 + �̅�𝑧𝑧𝛿휀𝑧𝑧 + 2 �̅�𝑦𝑧𝛿휀𝑦𝑧 + 2 �̅�𝑧𝑥𝛿휀𝑧𝑥 + 2 �̅�𝑥𝑦𝛿휀𝑥𝑦] 𝑉.   (15) 
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Since Eqs. 14 and 15 are equal and the virtual strains are arbitrary, any one of the 

strain components can be nonzero while setting the rest to zero. The stress 

components for the RVE can then be determined by simply matching terms 

between Eqs. 14 and 15. Thus the average Cauchy stress components determined 

from the virtual work approach are 

𝜎𝑥𝑥 =
1

𝑉
 ∑ 𝐹𝑥  𝑟𝑥 𝑙

𝑁−𝐵𝑒𝑎𝑚𝑠

1

 ;                                                                     

𝜎𝑦𝑦 =
1

𝑉
 ∑ 𝐹𝑦 𝑟𝑦 𝑙

𝑁−𝐵𝑒𝑎𝑚𝑠

1

 ;                                                                     

𝜎𝑧𝑧 =
1

𝑉
 ∑ 𝐹𝑧 𝑟𝑧 𝑙

𝑁−𝐵𝑒𝑎𝑚𝑠

1

 ;                                                                      

        𝜎𝑦𝑧 =
1

𝑉
 ∑ 0.5 (𝐹𝑦𝑟𝑧 + 𝐹𝑧 𝑟𝑦

𝑁−𝐵𝑒𝑎𝑚𝑠

1

𝑙  ;                                      (16) 

 𝜎𝑧𝑥 =
1

𝑉
 ∑ 0.5 (𝐹𝑧𝑟𝑥 + 𝐹𝑥𝑟𝑧) 𝑙

𝑁−𝐵𝑒𝑎𝑚𝑠

1

 ;                                                

𝜎𝑥𝑦 =
1

𝑉
 ∑ 0.5 (𝐹𝑥𝑟𝑦 + 𝐹𝑦𝑟𝑥) 𝑙

𝑁−𝐵𝑒𝑎𝑚𝑠

1

 .                                                

These expressions only involve the forces within the beams, their deformed lengths 

and orientations, and the volume of the RVE. No constitutive assumptions were 

required for this derivation implying that the average stress calculation is applicable 

for any constitutive model. The reinstantiation procedure for these cases, however, 

would have to be revisited.  

5. Verification Analyses 

This section assesses the algorithm for determining the average stress within the 

RVE based on the virtual work principle (Eq. 16). Since the averaging process itself 

is the topic of this research, the best available comparisons to verify that it produces 

favorable results are comparison with either the total elastic energy within the RVE 

or the summation of surfaces forces over the RVE boundary. Analytical expressions 

are derived for simple cases; however, approximations are made for the more 

complicated examples. It is important to note that inaccuracies in comparisons 

between the average stress calculations and the validation approximations do not 

necessarily reflect poorly on the average stress calculation.  
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Rather, as will be demonstrated, the inaccuracies reveal limitations of the 

approximations used for the more complex geometries and therefore a limitation in 

the use of the approximations as a validation tool. 

5.1 Beam Properties and Loading History 

The beam properties and sizes used in the analysis were chosen for convenience 

and are not necessarily representative of trabecular bone properties. The diameter 

of the round cross section beams is 0.1 mm, and the Young’s modulus is  

E = 400 MPa (MPa = N/mm2). The yield stress is set to 100 MPa so that the 

structure remains elastic. Since the beam deformation is integrated through time, 

the logarithmic strain is consistent with the beam deformation. 

In all cases, the peak velocity is applied to the RVE for 1 ms and is ramped to zero 

over the next 1 ms. This gives a total displacement in millimeters of 1.5 times the 

velocity in millimeters per microsecond. At 2 ms, the boundary conditions on the 

interior nodes are removed and the interior nodes are permitted to relax to their 

static equilibrium positions over the next 2 ms. In the following examples, the peak 

velocities are all less than 10-13 mm/ms at the end of the 4-ms total run time. This 

indicates that the mass proportional damping is functioning as intended to eliminate 

the dynamic modes. The nodes on the exterior remain at the locations prescribed 

earlier in the simulation. 

5.2 Analytic and Linearized Energy Relations 

Models of increasing complexity are analyzed to assess the validity of the average 

stress calculation. For the simplest configurations, the stress calculation is 

compared with the force summation. For the more complex beam configurations, 

the total elastic energy of the beams computed by ParaDyn is compared with the 

elastic energy integrated over the RVE. 

 𝑒 = ∫ [𝑉(𝜺)𝝈(𝜺): 𝑑𝜺].
�̅�

0
 (17) 

The volume, 𝑉, and the stress, 𝝈, are both a function of strain. The integration limit, 

휀,̅ is the average RVE strain. 

For deformations with one nonzero strain component, only a single conjugate stress 

component contributes to the energy. Thus, if the applied strain and energy are 

known, the energy can be used to validate the stress calculation. However, the stress 

is not necessarily linear in strain even though the beams themselves are linear 

elastic and the strains are not large. The geometry changes associated with the beam 
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motion introduce nonlinearities. Hence, the total beam energy can only be used as 

an approximate verification metric for the virtual stress calculation unless the 

nonlinearties of the system can be properly characterized.  

If the detailed information on nonlinearities is unavailable or too costly to process, 

a linear dependence of stress on applied strain is typically a reasonable assumption 

for the energy in a linear elastic material. For uniaxial strain compression where 

휀𝑒𝑣 is the applied strain and 𝜎𝑒𝑣 is the conjugate stress computed by Eq. 16, the 

energy is calculated by 

 𝑒 = ∫ [𝜎𝑒𝑣
𝜀

𝜀𝑒𝑣
𝐴𝐿0𝑒𝜀𝑑휀]

𝜀𝑒𝑣

0
. (18) 

The exponential times the reference length accounts for the changing volume of the 

RVE. 

5.3 Two-Beam Model 

A simple 2-dimensional (2-D) model composed of 2 beams initially oriented at 45° 

with respect to the horizontal is constructed, with the deformed configuration 

shown in Fig. 1. The RVE represented by the bounding box is H (1 mm) in the y-

direction and W = 2H (2 mm) in the x-direction. Uniaxial strain velocity boundary 

conditions are applied to force compression in the y-direction. The bottom nodes 

are fixed and the 2 upper nodes are constrained in the x-direction. The downward 

velocity at the upper surface is 0.01 mm/ms during the first millisecond so that the 

total vertical displacement at the upper nodes after the ramp down in velocity is  

0.015 mm, consistent with the loading description in Sections 3 and 5.1. 

 

 

Fig. 1   Configuration for simple 2-beam model showing the axial force. H is the initial height 

(1 mm) and W = 2H is the initial width (2 mm). 

 

 

H 

W=2H 
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5.3.1 Analytic Solution 

The deformed beam length is  

 𝑙 = [(𝐻 − 𝑢)2 + (
𝑊

2
)

2

]

1

2

= 𝐻 [(1 − �̃�)2 + 1]
1

2, (19) 

where u is the magnitude of the downward y-displacement, �̃� is the displacement 

normalized by the initial height, and W = 2H has been utilized. To third order in �̃�, 

the log strain in the beams is 

 휀 = −1

2
(�̃� − 1

6
�̃�3). (20) 

The force in the vertical direction is related to the axial stress in the beams (𝜎𝐴 =

𝐸 휀), the beam area (A), and the current angle of the beam with respect to the 

horizontal (𝜃).  

𝐹𝑦 = 𝜎𝐴 𝐴 sin(𝜃) = 𝐸 휀 𝐴 
1−𝑢

[(1−𝑢)2+1]
1
2

= −𝐸 𝐴 
1

2√2
(�̃� −

1

2
�̃�2 −

13

24
�̃�3 + ⋯ ). (21) 

With an initial height (H) of 1 mm, the displacement (u) of 0.015 mm, and the given 

modulus and beam diameter, Eq. 21 gives a force of 0.016533824 N. The axial 

beam force computed by ParaDyn is shown in Fig. 1. Multiplying this by the sine 

of the current beam angle gives the same force as Eq. 21 to within 6 nonzero digits. 

There is deviation in the 7th, which is consistent with discarding terms 𝑂(�̃�4) in 

the Eq. 21. 

The average y-direction stress on the RVE is the force in y-direction, multiplied by 

2 for the 2 beams and divided by 2 mm for the x-dimension of the RVE. A unit 

depth of 1 mm is assumed, so the y-direction stress consistent with Eq. 21 is  

–0.016533824 MPa. Analysis of the beams using Eq. 16 gives the same result, with 

deviation beginning in the 7th nonzero digit. Similarly, the x-direction stress 

(determined from the beam force, angle, and current RVE height) is  

–0.017041248 MPa and the shear stress is 0.016785629 MPa. Both agree with the 

results of Eq. 16 to the first 6 digits. Hence, the stress computation using the virtual 

work analysis of Eq. 16 is accurate for this simple case. 

The energy per unit depth for the 2-D model is obtained for each beam by 

integrating the force times the differential displacement. The result is 

 𝑒 = 𝐸 𝐴 
1

2√2
(

1

2
 �̃�2 −

1

6
�̃�3 −

13

96
�̃�4 + ⋯ ). (22) 

The energy computed for 2 beams from the analytic energy relation, Eq. 22, for a 

displacement of 0.015 mm is 2.486474x10-4 N-mm, which is the same as the energy  
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integrated by ParaDyn to the 7 nonzero digits given. This establishes that a 

postanalysis integration of the energy can give the correct result if all of the 

nonlinearities are considered.  

5.3.2 Approximate Energy Calculation 

However, in an RVE constructed from a complex beam geometry, there will not be 

a closed-form solution, and it is important to know the magnitude of the error 

introduced by not directly accounting for nonlinearities. This will establish how 

such an energy metric could be expected to be in error when verifying whether the 

virtual work stress evaluated from Eq. 16 is a valid means of computing stress for 

more complex geometries.  

For the previous example where 휀𝑒𝑣 = ln(1 − 0.015), the linear energy 

approximation of Eq. 18 gives 𝑒 = 0.0074811 𝐴 𝐿0𝜎𝑒𝑣 = 2.47383×10-4 N-mm, an 

error of 0.5%. A simpler approximation of 𝑒 = 0.5 𝐴 𝐿0𝜎𝑒𝑣 휀𝑒𝑣 = 2.49887×10-4  

N-mm also gives an error of 0.5%.  

To demonstrate that this error is a result of the nonlinearities in the problem, the 

analysis is repeated with a displacement of 0.0015 mm, an order of magnitude 

smaller. Here the y-direction stress computed by the virtual work method, Eq. 16, 

is –0.00166483 MPa and the energy integrated numerically by ParaDyn is 

2.49787x10-6 N-mm. Analytic Eqs. 21 and 22 reproduce these results to at least 6 

nonzero digits. However, compared with the results of the 0.015-mm displacement, 

it is clear that the stress does not scale linearly with displacement, and the energy 

does not scale quadratically. The energy computed by the linear stress 

approximation of Eq. 18 is 2.49661x10-6 N-mm, an error of 0.025%, which is an 

order of magnitude smaller than with the larger displacement. These results are 

summarized in Table 1. 

Table 1   Average RVE stress in the y-direction and total energy computed by various means 

for the configuration shown in Fig. 1. Digits that differ between stress predictions are 

highlighted. Digits of the energy predictions that differ from the ParaDyn solution are 

highlighted in yellow. 

Displacement 

(mm) 

 

Virtual work 

Eq. 16  

(𝝈𝒚𝒚, MPa) 

 

Analytic 

Eq. 21 

 (𝝈𝒚𝒚, MPa) 

 

Analytic 

Eq. 22 

(e, N-mm) 

 

Linearized 

Eq. 20 

(e, N-mm) 

ParaDyn 

(e, N-mm) 

0.0015 –0.00166483 –0.00166483 2.497871×10-6 2.49661×10-6 2.497872×10-6 

0.015 –0.01653385 –0.01653382 2.486474×10-4 2.47383×10-4 2.486474×10-4 
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Hence, at the 0.015 strain level, errors of 0.5% in calculating the total energy using 

the linearized approximation of Eq. 18 are attributable to ignoring nonlinearities. If 

the computed energy is used as a validation metric for the virtual work stress 

calculations, agreement to within 0.5% in the total energy is the best that can be 

demanded. 

5.4 Irregular Beam Structure in Compression 

A 2-D model composed of 111 beams and 78 nodes, Fig. 2, is used for further 

validation of the virtual work stress calculation. The model extent is  

2 × 2 mm in the plane, and a unit length out of plane is assumed. Boundary 

conditions consistent with uniaxial compression strain are applied as described in 

Section 5.1, with the total displacement on the upper surface being 0.015 mm. The 

axial stress distribution after the system has come to equilibrium is shown in  

Fig. 2. 

 

Fig. 2   Irregular beam configuration used to assess the stress calculation. The axial force is 

depicted. The region is 2 mm in both the x and y directions. 

The y-direction stress from the virtual work relation, Eq. 16, is –0.04450714 MPa, 

and the full stress tensor is given in Table 2. Substituting this stress into the 

linearized energy relation, Eq. 18, with A = 2 mm2, L0 = 2 mm and 휀𝑒𝑣 = 𝑙𝑛(1 −

0.015/2), the elastic deformation energy is estimated as 6.66769×10-4 N-mm. The 

integrated elastic energy computed by ParaDyn is 6.66622×10-4 N-mm, an energy 
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error of 0.02%. Therefore, the average stress for a complex RVE structure 

calculated by the virtual work expressions, Eq. 16, is consistent with the 

deformation energy. 

Table 2   Computed stress for irregular beam structure 

Stress Components for y-direction Strain  

(MPa) 

 Stress Components for Simple Shear  

(MPa) 

–0.01675563   0.00020244 0.0 0.00066804  0.01038036 0.0 

 0.00020244 –0.04450714 0.0 0.01038036 –0.00004881 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 

 

Although the RVE is deformed in uniaxial strain, the x-direction stress and the  

xy-shear stress are nonzero. The x-direction stress corresponds to the stress resisting 

Poisson expansion. The shear stress results from the reaction of the structure to the 

applied deformation. The structure has normal-shear coupling, a natural tendency 

to shear under compression loading. However, since it is restrained by the applied 

boundary conditions, a reaction stress is produced. Neither of these stresses 

contributes to the macroscopic energy calculation since the associated strains are 

zero. 

5.5 Irregular Beam Structure in Simple Shear  

The same 2-D beam model shown in Fig. 2 is subjected to simple shear boundary 

conditions by displacing the upper surface to the right by 0.015 mm. As with the 

compression deformation, all of the nodes are first moved to positions consistent 

with the applied strain and all of the interior nodes are subsequently released to 

relax to a static equilibrium configuration.  

The shear stress computed from the virtual work relation, Eq. 16, is 0.01038036 

MPa. Since there is no volume change associated with this deformation, the 

linearized energy relation corresponding to Eq. 18 is simply 𝑒 = 0.5 𝐴 𝐿0𝜎𝑒𝑣 𝛾𝑒𝑣 = 

1.557054×10-4 N-mm, where 𝛾𝑒𝑣 = 0.015/2 is the shear strain. The energy directly 

integrated by ParaDyn is 1.557843×10-4 N-mm, for an error of 0.05%. Here too, 

the proposed average stress calculation is shown to give a consistent result. 

The normal-shear coupling of the irregular structure is also evident in the  

x-direction and y-direction stress for this simulation, shown in Table 2. It is also 

notable that the pressure, –1/3 the trace of the stress, is not zero, implying shear-

pressure coupling. One might be tempted to cross-check the 2 analyses of the 

irregular structure by calculating the K2212 entry of the elastic stiffness from the 

second problem, which should be equal to the K1222 entry of the first problem if the 

elastic material is derivable from a strain energy relation. However, simple shear 
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involves a rotation of the stress tensor to satisfy material frame indifference, and 

that contribution to the x- and y-direction stresses is expected to be on the order of 

approximately 10−4 MPa, given the calculated RVE response. This unknown stress 

contribution is similar in magnitude to the stresses involved in the correlation, so 

such an analysis cannot be performed with any degree of certainty with the 

information currently available. 

5.6 Deformation in the Plastic Range 

The previous analyses demonstrated that the average stress calculate from virtual 

work relations, Eq. 16, provide an accurate RVE stress in the elastic range. 

However, the stress calculation does not depend on the material being elastic, as it 

is based only on the beam forces and geometry. The stress calculation will be 

equally valid if the beams are deformed into the plastic range. This is clearly evident 

for the 2-beam model where the RVE stress is computed directly from the forces 

and geometry. The irregular beam structure can also be evaluated in the plastic 

range, but the energy cannot be used for validation. Instead, validation must rely on 

the summation of nodal forces on the RVE surfaces. The force summation requires 

that the nodes on the lateral surfaces be free of shear tractions (Section 3), which is 

only appropriate for a limited range of deformation modes, as will be discussed 

Section 6. 

A simulation similar to that of Section 5.4 was run with shear-free lateral surfaces. 

If the beam yield strength remains high, as it was for the analyses above, the 

response is elastic and the y-direction stress determined from the virtual stress 

relations, Eq. 16, is 0.03866 MPa. The force output in ParaDyn plots is available to 

only 3 digits. The sum of the y-direction forces on the upper surface divided by the 

2-mm2 surface area agrees with this stress to the first 3 digits, as expected. The 

analysis was repeated with a beam yield strength of 0.5 MPa, and the structure 

deformed plastically. Here the y-direction stress computed from the virtual work 

expressions is 0.004542 MPa. The stress computed from the summation of surface 

forces again agrees to the 3 available nonzero digits, confirming that the method 

does indeed calculate the correct stress in the plastic range. 

The mass proportional damping applied to quell the dynamic modes alters the path 

dependence of the solution in the plastic range. While the path dependence of the 

solution is incorrect, the resulting configuration is still a valid static equilibrium 

configuration, and it is suitable for analysis stress averaging methods for the RVE.  
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6. Discussion  

The decision to impose the boundary conditions on all of the exterior nodes of the 

RVE requires discussion. For uniaxial strain, allowing the nodes freedom to slide 

along the RVE surfaces does result in somewhat lower stress and elastic 

deformation energy, as noted in Section 5.6. These boundary conditions were 

investigated and the results are also consistent with stresses calculated by the virtual 

work expression, Eq. 16. However, it is not possible to apply shear free boundary 

conditions consistent with an arbitrary strain increment, as shear stresses cannot be 

supported, and a simple shear analysis would not be possible. Thus, an arbitrary 

strain can only be imposed consistently on the RVE by specifying boundary 

conditions on all of the degrees of freedom on all of the exterior nodes. 

A consequence of these boundary conditions is that the stress cannot be calculated 

by summing forces over faces except, in special circumstances. Consider the 

configuration in Fig. 2. The y-direction forces on the lateral surfaces also contribute 

to the y-direction stress. The sums of the forces on the upper and lower surfaces are 

not necessarily the same, nor is the sum of forces over a face divided by the area 

necessarily equal to the average stress.  

Another boundary condition choice that needs to be address concerns rotations and 

moments. No rotational constraints are imposed on the beam rotation degrees of 

freedom, and the resultant moments at static equilibrium are zero on all of the 

nodes, interior and exterior. Imposing rotation constraints on the exterior of the 

RVE results in moments on the exterior of the RVE. These contribute to an effective 

moment imposed on the RVE. In the derivation of the stress tensor for continuum 

mechanics, it is assumed that there is not net moment at a material point, and that 

assumption results in the stress tensor being symmetric. An RVE is treated as a 

material point from the perspective of the higher length scale model, so having a 

net moment on the RVE would be inconsistent with the underlying continuum 

mechanics assumptions.  

Simulations on the beam configuration in Fig. 2 were run imposing constraints on 

the rotational degrees of freedom on the exterior nodes consistent with the applied 

deformation. For simple shear, these boundary conditions were no rotation on the 

upper and lower surface nodes, and nodal rotations equal to half of the shear angle 

on the lateral surfaces. The rotations of the corner nodes were the average of the 2 

intersecting faces. When the volume-average stress was determined using virtual 

work relations, Eq. 16, the contribution from the first term of the 𝜎𝑥𝑦 expression 

was different from the contribution from the second term in the first digit. Without
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application of the rotation boundary conditions, the terms were the same to at least 

7 nonzero digits. The imposed rotation constraints on the RVE inconsistent with 

the underlying continuum mechanics assumptions and the virtual work derivation. 

The classical derivation of the stress tensor is for a material point and assumes that 

summation of moments at the point is zero. That assumption leads to the stress 

tensor being symmetric. Moments resulting from imposition of rotation boundary 

conditions violate this underlying assumption, which is reflected in unequal 

contributions to the shear stress in Eq. 16. Since the higher length scale code in the 

HMS framework assumes a symmetric stress tensor, rotational constraints cannot 

be imposed for the current HMS framework. 

Stepping back from the current application, there is nothing inherently wrong with 

a subscale microstructure model producing a nonsymmetric stress, traction 

gradients on the surfaces, and coupling between deformation modes. These features 

reflect aspects of microstructure in finite volumes that are not considered in the 

continuum mechanics derivations for behavior at a material point. The upper length 

scale analyses typically ignore the structure within RVEs because only the first 

moments of the response, the averages, can be used in the formulation. It should be 

possible to construct continuum-like frameworks with finite-sized base units rather 

than assuming reduction to a material point (couple-stress theories are still based 

on representations at a material point). These would have the potential to 

incorporate second moments of microstructure information into large-scale 

deformation analyses. 

7. Conclusions 

An efficient procedure has been presented to obtain the static equilibrium 

configuration of a network of elastic beams within an explicit dynamic finite 

element code. Expressions for computation of the average stress over the RVE have 

been presented based on the principal of virtual work, and these stresses have been 

shown to be consistent with both nodal force computations and stored energy. The 

stress averaging procedure is also valid for RVE deformations into the plastic range. 
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